Alice Through the Looking Glass
(Extended Mix)*

Andreas Rossberg Didier Le Botlan Guido Tack
Thorsten Brunklaus Gert Smolka

Universitat des Saarlandes, Saarbriicken, Germany
{rossberg,botlan,tack.brunklaus,smolka}@ps.uni-sb.de

April 15, 2005

Abstract: We present Alice ML, a functional programming language that has been
designed with strong support for typed open programming. It incorporates concurrency
with data flow synchronisation, higher-order modularity, dynamic modules, and type-
safe pickling as a minimal and generic set of simple, orthogonal features providing that
support. Based on these mechanisms Alice offers a flexible notion of component, and
high-level facilities for distributed programming.

1 Introduction

Software is decreasingly delivered as a closed, monolithic whole. As complexity and
integration of software grows it becomes more and more important to allow flexible
dynamic acquisition of additional functionality. Also, program execution is no longer
restricted to one local machine only. With the Internet having gone mainstream and
net-oriented applications being omni-present, programs become increasingly distributed
across local or global networks. As a result, programs need to exchange larger amounts
of data, and the exchanged data is of growing complexity. In particular, programs need
to exchange behaviour, that is, data may include code.

We refer to development for the described scenario as open programming. Our under-
standing of open programming includes the following main characteristics:

*This paper is an extended version of [RLT+05].



Modularity, to flexibly combine software blocks that were created separately.

e Dynamicity, to import and export software blocks in running programs.

Security, to safely deal with unknown or untrusted software blocks.

Distribution, to communicate data and software blocks over networks.
o (Concurrency, to deal with asynchronous events and non-sequential tasks.
Software blocks intended for dynamic combination are usually called components.

Most practical programming languages today have not been designed with open pro-
gramming in mind. Even the few that have been — primarily Java [GJS96] — do not
adequately address all of the above points. For example, Java is not statically type-safe,
has only weak support for import/export, and rather clunky distribution and concur-
rency mechanisms.

Our claim is that only a few simple, orthogonal concepts are necessary to provide a
flexible, strongly typed framework supporting all aspects of open programming. Compo-
nents are a central notion in this framework, but instead of being primitive they can be
derived from the following simpler, orthogonal concepts:

o Futures, which allow for light-weight concurrency and laziness.

Higher-order modules, to provide genericity and encapsulation.

Packages, to wrap modules into self-describing, dynamically typed entities.

Pickling, to enable generic persistence and distribution.
e Proxy functions, to enable remote calls into other processes.

To substantiate our claim, we developed the programming language Alice ML, a conser-
vative extension of Standard ML [MTHM97]. It is largely inspired by Oz [Smo95, Moz04,
VHO04], a relational language with advanced support for open programming, but lacking
any notion of static typing. The aim of the Alice project [Ali04] is to systematically re-
construct the essential functionality of Oz on top of a simple and well-understood, typed
functional core language. Alice is strongly typed and supports typeful programming
[Car91] with abstraction safety (encapsulation) preserved at all times.

The Alice ML language has been implemented in the Alice Programming System [Ali04],
a full-featured programming environment based on a VM with just-in-time compilation,
support for platform-independent persistence and platform-independent mobile code,
and a rich library for constraint programming.



Organisation of the paper

This paper describes the concepts introduced in Alice to enable open programming. In
order to support concurrency and laziness, Alice provides the concept of futures, de-
scribed in Section 2. A higher-order extension to the SML module system enhances
modularity and is briefly sketched in Section 3. Type-safe import and export is re-
alized by introducing dynamically typed modules called packages that can be pickled,
as described in Section 4. In Section 5 we introduce the component model and show
in Section 6 how it can be decomposed. Communication through a network based on
components is considered in Section 7. We illustrate most of the features of Alice in
Section 8 considering the case study of a distributed solver for constraint programming.
We discuss related work in Section 10 and conclude in Section 11.

2 Futures

Programs communicating with the outside world usually have to deal with non-deterministic,
asynchronous events. Purely sequential programming cannot adequately handle such
scenarios. Support for concurrency hence is vital for open programming,.

Concurrency in Alice is based uniformly on the concept of futures, which has been
mostly adapted from Multilisp [Hal85], where they were introduced as an approach to
make automatic parallelisation of functional programs effective. A future is a transparent
place-holder for a yet undetermined value that allows for implicit synchronisation based
on data flow. There are different kinds of futures, which we will describe in the following
sections:

o concurrent futures hold place for the result of an evaluation in a thread,

e lazy futures hold place for the result of a delayed computation,

o promised futures are created as holes to be filled later by an explicit operation,
o failed futures mark futures for which no value could be determined.

A formal semantics of the future mechanism present in Alice can be found in [NSS02],
more examples are presented in [Smo99].

Futures are a generic mechanism for communication and synchronisation. As such, they
are comparatively simple, but expressive enough to enable formulation of a broad range
of concurrency abstractions.



2.1 Concurrency

Future-based concurrency is very light-weight: any expression can be evaluated in its
own thread, a simple keyword allows forking off a concurrent computation for evaluating
an expression:

spawn exp

This phrase immediately evaluates to a fresh concurrent future, standing for the yet
unknown result of exp. Simultaneously, evaluation of exp is initiated in a new thread.
As soon as the thread terminates, the result globally replaces the future.

A thread is said to touch a future [FF95] when it performs an operation that requires the
actual value the future stands for. A thread that touches a future is suspended automat-
ically until the actual value is determined. This is known as data flow synchronisation.

Thanks to futures, threads give results, and concurrency can be orthogonally introduced
for arbitrary parts of an expression. For example, to evaluate all constituents of the
application eq(es.e3) concurrently, it is sufficient to annotate the application as follows:

(spawn e1) (spawn ez, SPAWN e3)

Hence, threads with futures blend perfectly into the “everything is an expression” phi-
losophy of functional programming. For that reason, we call them functional threads.

Functional threads allow turning a synchronous function call to a function f into an
asynchronous one by simply prefixing the application with spawn:

val result = spawn f (x, y, 2)

The ease of making asynchronous calls even where a result is required is important in
combination with distributed programming (Section 7), because it allows for lag toler-
ance: the caller can continue its computation while waiting for the result to be delivered.
Data flow synchronisation ensures that it will wait if necessary, but at the latest possible
time, thus maximising concurrency.

Futures already provide for complex communication and synchronisation. Consider the
following example:

val offset = spawn (sleep(Time.fromSeconds 120); 20)
val table = Vector.tabulate (40, fn i = spawn fib( + offset))

The first declaration starts a thread that takes two minutes to deliver the value 20.
The computation for the table entries in the second declaration depends on that value,
but since the entries are computed concurrently, construction of the table can proceed
without delay. However, the individual threads computing its content will all block until
offset is determined. Consecutive code can access the vector without caring about the
progress of the threads. If evaluation depends on a value that is not yet determined, it
will automatically block as long as required.



Besides implicit synchronisation, Alice offers primitives for explicit synchronisation:!

val await 1 a — «
val awaitEither : a x g — (a.8) alt

The function await is a strict variant of the identity function: if applied to a future, it
blocks until the future has been replaced by a proper value. A straightforward abstrac-
tion using this function is the barrier function that implements a join point by applying
a list of functions concurrently and waiting for all computations to terminate:

fun barrier fs = map await (map fn f = spawn f () fs)

The function awaitEither implements non-deterministic choice: given two futures it blocks
until at least one has been determined. It is sufficient as a primitive to encode complex
synchronisation with multiple events. As a simple example, consider an abstraction for
waiting with time-out:
fun awaitTimeout time x =
case awaitEither (x, spawn sleep time) of

FST x = x
| SND _ = raise Timeout

2.2 Laziness

SML is an eager language. While eager evaluation has advantages (e.g. making algorith-
mic complexity more predictable), certain algorithms are expressed more elegantly or
more efficiently with lazy evaluation. It has become a common desire to marry eager and
lazy evaluation, and the future mechanism provides an elegant way to do so. While keep-
ing eager semantics the default behaviour, full support for laziness is available through
a lazy variant of futures. A lazy future is introduced analogously to a concurrent one:
the phrase

lazy exp

will not evaluate exp, but instead returns a fresh lazy future, standing for the yet un-
known result of exp. Evaluation of exp is triggered by a thread first touching the future.
At that moment, the lazy future becomes a concurrent future, associated with a fresh
thread performing the computation. Evaluation proceeds as for concurrent futures.

In other words, lazy evaluation can be selected for individual expressions. For example,
the expression (fn x = 5) (lazy raise E) will not raise E. A fully lazy evaluation regime can
be emulated by prefixing every subexpression with the lazy keyword, but usually only
few strategic annotations are necessary.

In order to support the definition of lazy functions conveniently, Alice extends the defi-
nition of SML’s sugared function declaration syntax with support for the lazy keyword.
For example, a lazy mapping function on lists can be defined as

!The type alt is defined in the Alice library as: datatype (a.8) alt = FST of a — SND of j3



fun lazy map f nil = nil
| map f (x::xs) = f x :: map f xs

which desugars into

valrec map =fnf=fnl=
lazy case (f,) of
(f, nil) = nil
| (f, x::x8) = fx 2 map fxs

In fact, spawn is supported likewise, for the definition of asynchronous functions.

It should be noted that Alice does in no way restrict the combination of laziness with
effects. As with concurrency, it is good advise to keep side effects, and particularly the
non-local use of mutable state, to a minimum in lazy computations.

2.3 Failed Futures

ML is an impure language, in which evaluation can terminate with two possible outcomes:
ordinary termination with a result value, or exceptional termination with an uncaught
exception. What happens to a future when the associated thread terminates with an
exception?

Failed futures allow structured propagation of exceptions between threads. A failed
future carries an exception. When a thread terminates with an exception, the associated
future becomes failed with that exception. Any attempt to touch a failed future re-raises
its exception in the respective thread. For example, after evaluating

val x = spawn raise Empty
the expression x+1 will raise Empty.

A special error condition with respect to futures is the attempt to determine and replace
a future with itself (it is perfectly valid to replace it with a different future). For example,
a thread may return its own future, by exploiting recursion or side effects in certain ways.
There is no way to eliminate the future in that case, an erroneous configuration that is
called a black hole and cannot generally be detected statically. The error is flagged by
failing the respective future with the special exception Cyclic.

Failed futures can be employed in different ways. One strategy is to ignore the possi-
bility of exceptions due to failed futures in all places except some supervising control
threads that have the responsibility for handling them and probably restarting certain
computations. This is basically the philosophy of “letting it crash” that is favoured and
successfully used in the concurrent language Erlang [Arm03]. Alternatively, default han-
dlers can be installed within important thread expressions, so that exceptions are ensured
not to escape. No commitment is made by the language semantics, futures represent the
primitive that enables programming different strategies as higher-level abstractions.



2.4 Promises

Functional threads and lazy evaluation offer convenient means to introduce and eliminate
futures. However, the direct coupling between a future and the computation delivering
its value often is too inflexible, because it demands an initial commitment to the way
the information is obtained. A thread might want to create a future without making
such a commitment early on. It might even want to allow some other actor to deliver
it. For such cases, promises are a more fine-grained mechanism that allows for creation
and elimination of futures in separate operations.

Promises are available through a library structure named Promise, with the following
signature:

type a promise

exception Promise

val promise : unit — a promise

val future : a promise — «

val fuffill © a promise x a — unit

val fail . a promise x a — unit

A promise is an explicit handle for a future. It virtually states the assurance that a
suitable value determining the future will be made available at some later point in time,
fulfilling the promise. When a new promise is created with the procedure promise, a
promised future is created along with it that can be obtained with the future function.
A promised future largely behaves like a concurrent future, in particular by allowing
data flow synchronisation. The difference is that it is not replaced automatically, but
has to be eliminated by explicitly applying the fulfil function to its promise. A promise
can also be ‘broken’ by means of the fail function, yielding a failed future carrying the
corresponding exception.

A promise may only be fulfilled or failed once — after one of these operations was suc-
cessfully performed any further attempt will raise the exception Promise. This yields a
view of promises as single-assignment references, that differ from a usual references in
that they are created uninitialised and may only be assigned once. Dereferencing them
prior to assignment delivers a future standing for the later (immutable) content.

Promises allow the partial and top-down construction of data structures with holes, as
exemplified by the tail-recursive formulation of the append function shown in Figure
1. However, they are particularly important for concurrent programming: for example,
they can be used to implement streams and channels as lists with a promised tail, and
they provide an important primitive for programming synchronisation, as we will see in
the next section.

2.5 Thread Safety

Basic thread safety is provided by defining all primitive operations that access or modify
state as atomic. Of course, that alone is not sufficient for thread-safe programming: when



fun append (11, 12) =
let
fun iter (p, nil) = fuffill (p, 12)
| iter (p. x::xs) = let val p’ = promise O in fulfill (p, x::future p"); iter (pP’, xs) end
val p = promise
in
iter (p, 11); future p
end

Figure 1: Tail-recursive append with promises

multiple threads share mutable state it is imperative to synchronise access, usually by
forms of locking on critical sections. Alice requires no primitive locking mechanisms,
they can be fully bootstrapped from promises, plus references with an atomic exchange
operation, a variant of the fundamental test-and-set operation [Hal85]:

val exchange : aref x a = «

The exchange operation alone is sufficient to bootstrap basic synchronisation mecha-
nisms. Without further primitives their implementation would often require forms of
polling, though. Along with futures and promises such polling can be circumvented.

As a simple example demonstrating this, Figure 2 presents a higher-order function imple-
menting mutex locks for synchronising an arbitrary number of functions.? The following
snippet illustrates its use to synchronise concurrent communication to standard output,
by preventing execution of f and g to be interleaved (without making a commitment
with respect to the order of execution of the calls):

val mutex = mkMutex O

val f = mutex (fn x = (print “x = “; print x; print “\n"))
val g = mutex (fn y = (print y; print “\n"))

spawn f “A”; spawn g “B”; spawn f “"C”

A lock itself is represented by a reference. When it contains O the lock is free, whenever
it contains a future the lock is taken. To take the lock, a fresh future is created and
stored in the reference while simultaneously retrieving its previous content. As soon
as that content is determined to O the pending function call can be executed; upon its
return the lock is released by eliminating the new future. Care must be taken to also
release the lock when the function terminates with an exception.

It should be noted that promises are derivable in a language with concurrent futures and
atomic exchange. Figure 3 shows a non-primitive implementation of promises. It relies on
one polling thread for each created promise, whose task is to replace the corresponding
future. The decomposition hence is not practical as an implementation strategy, but
justifies the conceptual integration of promises as a library instead of language primitives.

% Alice defines exp, finally exp, as syntactic sugar for executing a finaliser exp, after evaluation of exp,
regardless of any exceptional termination, similar to the fry...finally...expression or statement in
other languages.



Cmutex:unit - (@a—=B8) = @—=0)
fun mutex O =

let
valr=ref () (* createlock *)
in
fnf=fnx=
let
val p = promise
in
await (exchange (r, future p)); (* take lock ™)
fx
finally fulfill (o, O) (*release lock *)
end
end

Figure 2: Mutexes for synchronised functions

type « promise = {free : bool ref, value : a option ref}
exception Promise
fun promise O = {free = ref frue, value = ref NONE}

fun poll r = case Ir of SOME x = x
| NONE = pollr

fun future {free, value} = spawn poll value
fun fulfill ({free, value}, x) =

if exchange (free, false)

then value := SOME x

else raise Promise

fun fail (p, e) = fulfill (p, spawn raise )

Figure 3: A non-primitive implementation of promises




2.6 Modules and Types

Futures are not restricted to the core language, entire modules can be futures, too.
In particular, module expressions can be evaluated lazily or concurrently, by explicitly
prefixing them with the corresponding keywords lozy or spawn. More importantly, we
will see in Section 5 that lazy module futures are ubiquitous as a consequence of the lazy
linking mechanism for Alice components.

Evaluating a structure lazily implies that its body is evaluated not before one of its fields
is touched. That is, a projection M.a, where the structure M is lazy, does not by itself
touch M. Only when the projected field is used in a future-strict position evaluation of
M will be triggered to determine M.a. In other words, projection from structures via
long identifiers is implicitly lazy. This semantics is motivated by the observation that
structures are primarily used to define local scopes and organise name spaces. It is not
desirable that mere grouping and qualified identification changes strictness — otherwise
modular programming would become an obstacle for laziness (and particularly lazy
linking, see Section 5).

Module futures can also be failed. Exceptions from failed module futures can be caught
because Alice allows modules to be declared in local scope (Section 3), which can be
surrounded by a handler.

The combination of module futures and dynamic types (Section 4) also implies the
existence of type futures. They are touched only by the unpack operation (Section
4.1) and by pickling (Section 4.2). Touching a type generally can trigger arbitrary
computations, e.g. by loading a component (Section 5).

3 Higher-order Modules

For open programming, good language support for modularity is essential. The SML
module system is quite advanced, but still limited by its restriction to first-order functors
(parameterised modules) and its stratified design (modules cannot be declared locally).
Adopting a long line of work [DCHO3, Ler95, Lil97, Rus98|, Alice extends the SML
module system in three ways:

e Higher-order functors. Functors can be arbitrarily composed.

o Nested and abstract signatures. Signatures can be wrapped in structures and be
specified abstractly.

o Local modules. Modules can be defined within core let expressions.

Local modules are important for dealing with packages (Section 4), while the other two
extensions allow more general forms of abstraction. In particular, they turn structures
into a general container for all language entities, which is crucial for the design of the
Alice component system (Section 5).
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Nested and abstract signatures are less standard than the other two features. But they
are interesting because they enable the definition of polymorphic functors, exemplified
by a general application functor:

functor Apply (signature S signature T) (F: S—T) (X:S)=F X

Polymorphic functors are used in the Alice library to provide certain functionality at
the module level. We will see an example of this in Section 8.

More importantly, nested signatures turn structures into a general container for all
language entities, which is crucial for the design of the component system (Section 5).

Space consideration preclude a detailed presentation of the Alice module language, but
the knowledgeable reader will realise that the above extensions turn it into a higher-
order functional language that closely mirrors the module language of Objective Caml
[Ler03, Ler94], except that functors are not applicative [Ler95]. Like in Objective Caml,
the presence of abstract signatures renders module type checking undecidable [Lil97],
but this has not turned out to be a problem in practice.

4 Packages

When a program is able to import and export data and functionality dynamically, from
statically unknown sources, then a certain amount of runtime checking is inevitable
to ensure the integrity of the program and the runtime system. In a language with
a strong type system, like ML, it particularly must be ensured that dynamic imports
cannot undermine the invariants established by the type system. How can the tension
be resolved?

Dynamics [Myc83, ACPR95, LM93] complement static typing with dynamic type check-
ing. They provide a universal type dyn of ‘dynamic values’ that carry runtime type
information. Values of every type can be injected into this type. Projection usually is a
complex type-case operation that dispatches on the runtime type found in the dynamic
value.

Dynamics adequately solve the problem of typed open programming by demanding ex-
ternal values to uniformly have type dyn. We see several hurdles that nevertheless
prevented the wide-spread adoption of dynamics in practice: (1) their too fine level of
granularity, (2) the complexity of the type-case construct, (3) the lack of flexibility with
matching types.

Dynamics maintain most properties of the static type system by isolating dynamic typ-
ing with the projection operation, and they solve the problem of open programming by
demanding external values to uniformly have type dyn. We see several hurdles that nev-
ertheless prevented the wide-spread adoption of dynamics in practice: (1) the improper
level of granularity they provide for wrapping objects, (2) the complexity of the type-
case construct, particularly with respect to polymorphic types, (3) the lack of flexibility
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with matching types, which makes them fragile against interface changes. Moreover,
dynamics destroy parametricity, a desirable property that we will discuss in Section 4.4.

We modified the concept of dynamics slightly: instead of plain values dynamics in Alice,
called packages, contain modules. Projection simply matches the runtime package signa-
ture against a statically specified one — with full respect for subtyping. Reusing module
subtyping instead of type matching and dispatch has several advantages: (1) it keeps
the language simple, (2) it is flexible and sufficiently robust against interface evolution,
and (3) it allows the programmer to naturally adopt idioms already known from mod-
ular programming, particularly with respect to type sharing. Moreover, packages allow
modules to be passed as first-class values, a capability that is sometimes being missed
from ML, and becomes increasingly important with open programming.

A formal semantics for packages can be found in [Ros05].

4.1 Basics

A package is a value of the abstract type package. Intuitively, it contains a module,
along with a dynamic description of its signature. We call that signature the package
signature.

There are only two basic operations on packages. A package is created by injecting a
module, expressed by a structure expressions strexp in SML 2 into the type package:

pack strexp : sigexp
The signature expression sigexp defines the package signature. Of course, the module ex-

pression strexp must statically match this signature. The inverse operation is projection,
eliminating a package. The module expression

unpack exp : sigexp
takes a package computed by exp and extracts the contained module, provided that
the package signature matches the target signature denoted by sigexp. Statically, the

expression has the signature sigexp. If the dynamic check fails, the pre-defined exception
Unpack is raised.

For example, we can wrap the library structure List into a package,
val p = pack List : LIST
and unpack it successfully using the same signature:

structure List1 = unpack p : LIST

3Note that Alice supports higher-order modules, such that strexp includes functor expressions.
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Any attempt to unpack p with an incompatible signature will fail. Note that all sub-
sequent accesses to Listl or members of it are statically type-safe, no further checks are
required.

The syntax for package injection and projection has been borrowed from Russo’s work
on first-class modules [Rus00, Rus98], and indeed there is a close relation. The funda-
mental difference is that first-class modules are statically typed (the type of a module
value describes its full signature), while packages are dynamically typed (the type pack-
age is abstract). A package can be understood as a first-class module wrapped into a
conventional dynamic. However, coupling both mechanisms enables unpack to exploit
subtype polymorphism, which is not possible otherwise, due to the lack of subtyping in
the ML core language.

4.2 Pickling

The primary purpose of packages is to type dynamic import and export of high-level
language objects. At the core of this functionality lies a service called pickling. Pickling
takes a value and produces a transitively closed, platform-independent representation
of it that is transferable to other processes, where an equivalent copy of the original
value can be constructed. Since ML is a language with first-class functions, a pickle can
naturally include higher-order data, i.e. closures and code. Thanks to packages, even
entire modules can be pickled.

One obvious application of pickling is persistence, available through two primitives in
the library structure Pickle:

val save : string x package — unit
val load : string — package

The save operation writes a package to a file of a given name. Any future occurring in
the package (including lazy ones) will be touched (Section 2.1). If the package contains
a local resource, i.e. a value that is private to a process, then the exception Sited is raised
(we return to the issue of resources in Section 5.3). The inverse operation load retrieves
a package from a file.

For example, we can write the library structure Aray to disk, using the following id-
iomatic code:

Pickle.save (“/tmp/array.alc”, pack Array : ARRAY)
It can be retrieved again with the inverse sequence of operations:
structure Array1 = unpack Pickle.load “/tmp/array.alc” : ARRAY

Any attempt to unpack it with an incompatible signature will fail with an Unpack ex-
ception. All subsequent accesses to Arrayl or members of it are statically type-safe,
no further checks are required. The only possible point of type failure is the unpack
operation.

13



4.3 Dynamic Type Sharing

Note that the type Arrayl.aray from the example in the previous section will be statically
incompatible with the original type Array.array, since there is no way to know statically
what type identities are found in a package, and all types in the target signature must
hence be considered abstract. If compatibility is required, it can be enforced in the usual
ML way, namely by putting sharing constraints on the target signature:

structure Array1 = unpack Pickle.load “/tmp/array.alc”
: ARRAY where type array = Array.array

The constraint effectively expresses dynamic type sharing. By restricting the target
signature we ensure static compatibility, but of course we also preclude successful loading
of non-standard implementations of arrays. Much like for programming with functors,
it depends on the application how much sharing is required.

Note that dynamic type sharing can be employed for typeful programming [Car91] with
dynamic types, when packages themselves contain the implementation of abstract types.
Consider a strategy game. Campaigns can be created with different configurations (e.g.
different map sizes), and for each campaign, an arbitrary number of snapshots (saved
games) can be stored. When the program is exited, the current campaign is pickled and
can be continued next time the game is started. At any point, a stored snapshot can be
loaded. A snapshot only is valid in conjunction with the campaign that it belongs to.
Thus, a snapshot can be modelled as an abstract type that is created along with each
individual campaign and becomes part of a campaign pickle. Loading a snapshot then
requires dynamic sharing between the type of snapshots of the current campaign and
the snapshot’s signature.

4.4 Parametricity

By utilising dynamic type sharing it is possible to dynamically test for type equivalences.
In other words, evaluation is no longer parametric [Rey83]. For example,

functor F (type 1) = unpack load file : (val it : 1)
is a functor that behaves differently depending on what type t it is passed.*

Parametricity has important advantages: it induces strong static invariants about poly-
morphic types [Wad89], which allow deriving a variety of useful laws and particularly
guarantee abstraction [Rey83, MP88] and enable efficient type erasing compilation, such
that compiled programs need not maintain costly type information at runtime.

On the other hand, packages enforce the presence of non-parametric behaviour. Alice
thus has been designed such that the core language, where polymorphism is ubiquitous,
maintains parametricity. Only the module level employs dynamic type information —

4 Alice allows abbreviating signatures sig ...end with (...), likewise for structures.
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the evaluation of module expressions can be type-dependent. This design reduces the
costs for dynamic types and provides a clear model for the programmer: the only type
information relevant to the dynamic semantics (and its costs) are explicitly declared in
the program. Implicit type information on the core level is not relevant.®

The restriction of type-driven evaluation to the module language is not without draw-
back: a parametric core language significantly restricts the expressive power of dynamic
typing. In our experience however, there is no strong need for a more liberal regime.
Thanks to higher-order and local modules (Section 3) it is often possible to lift the pro-
cedure in question to a functor. Moreover, packages provide a systematic way to work
around the restriction, because they can be abused to pass dynamic type information to
core functions if really required.

4.5 Abstraction Safety and Generativity

The absence of parametricity on the module level still raises the question of how dynamic
typing interferes with type abstraction. Can we sneak through an abstraction barrier by
dynamically discovering an abstract type’s representation? For instance:

signature S = sig type t; val x : t end

structure M = struct type t = int; val x =37 end :> S

structure N = unpack (pack N : S) : (S where type t = int)
valy =N.x+ 1

Fortunately, the unpack operation will fail at runtime. This behaviour is achieved by
a dynamically generative interpretation of type abstraction: with every abstraction op-
erator :> evaluated, fresh type names are generated dynamically [Ros03]. Abstraction
safety is maintained even across process boundaries, because type names are globally
unique. There is no way within the language to break abstraction, even when whole
modules and implementations of abstract types are exported.

The generative semantics of abstract types implies that execution of the same imple-
mentation of an abstraction will create incompatible instances between runs of the same
program, or between different processes loading it. However, this is not a severe restric-
tion, because the availability of module-level pickling enables us to execute it only once
and then share the same evaluated instance of the abstraction between processes. As
we will see in Section 5.4, pickling a module actually creates a proper component that
is interchangeable with components generated by the compiler.

®Note that SML does not allow type or signature declarations to refer to free type variables, so that
no interference is possible.
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5 Components

Software of non-trivial complexity can neither be developed nor deployed as a monolithic
block. To keep the development process manageable, and to allow flexible installation
and configuration, software has to be split into functional building blocks that can be
created separately and configured dynamically. Such building blocks are called compo-
nents.

We distinguish components from modules: while modules provide name spacing, gener-
icity, and encapsulation, components provide physical separation and dynamic composi-
tion. Modules are referred to by identifiers and static scoping rules, where components
are identified by extra-linguistic means that are resolved dynamically. Both mechanisms
complement each other.

Alice incorporates a powerful notion of component that is a refinement and extension of
the component system found in the Oz language (where components are called functors
by slight abuse of terminology) [DKSS98], which in turn was partially inspired by Java
[GJS96]. It provides all of the following:

e Separate compilation. Components are physically separate program units.

e Lazy dynamic linking. Loading is performed automatically when needed.

Static linking. Components can be bundled into larger components off-line.

e Dynamic creation. Components can be computed and exported at runtime.

Type safety. Components carry type information and linking fully checks it.

Flexibility. Type checking is tolerant against interface changes via subtyping.
o Sandbozing. Custom component managers enable selective import policies.

The component system of Alice is based on a combination of different mechanisms pre-
sented in the previous chapters:

e Higher-order modules, for encapsulating all possible language entities,
e Packages, for dynamic type checking of imports,

e Futures, for performing linking lazily,

e Pickling, for representing components externally.

We will first give a general overview of components before we see how precisely they
relate to the mechanisms listed above.
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5.1 Introduction

Components are the unit of compilation as well as the unit of deployment in Alice. A
program consists of a — potentially open — set of components that are created separately
and loaded dynamically. Static linking allows both to be performed on a different level
of granularity if desired, by bundling given components to form larger ones. Every
component defines a module — its ezport — and accesses an arbitrary number of modules
from other components — its imports. Both, import and export interfaces, are fully typed
by ML signatures.

Each Alice source file defines, and is compiled into, a component. Syntactically, a com-
ponent definition is a sequence of SML declarations that is interpreted as a structure
body, forming the export module. The respective export signature is inferred by the
compiler.

A component can access other components through a prologue of import declarations:

import spec from string

The SML signature specification spec in an import declaration describes the entities
used from the imported structure, along with their type. Because of Alice’s higher-order
modules (Section 3), these entities can include functors and even signatures. The string
contains the URL under which the component is to be acquired at runtime. The exact
interpretation of the URL is up to the component manager and its resolver (Section 5.3),
but usually it is either a local file, an HTTP web address, or a virtual URL denoting
local library components. For instance, the following are valid imports:

import structure Pickle : PICKLE from “x-alice:/lib/system/Pickle”
import structure Server : sig val run : (a—3) — (a—3) end from “http://domain.org/server”

For convenience, Alice allows the type annotations in import specifications to be dropped.
In that case, the imported component must be accessible (in compiled form) during
compilation, so that the compiler can insert the respective types from its signature. For
example, the previous import declarations could be written as

import structure Pickle from “x-alice:/lib/system/Pickle”
import structure Server from “http://domain.org/server”

This feature is particularly needed for large modules, where repeating the signature
would be tedious. As an additional service, the compiler automatically thins implicit
signatures by removing all entities that are not directly or indirectly referred in the
remainder of the component. Doing so makes the compiled component maximally robust
against eventual changes in parts of an interface that are not accessed.
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5.2 Program Execution and Dynamic Linking

A designated root is the main component of a program. To execute a program, its
root component is evaluated. Loading of imported components is performed lazily, and
every component is loaded and evaluated only once. This is achieved by treating every
cross-component reference as a lazy future (Section 2.2).

The process of loading a component requested as import by another one is referred to
as dynamic linking. It involves several steps:

1. Resolution. The import URL is normalised to a canonical form.
2. Acquisition. If the component is being requested for the first time, it is loaded.
3. Ewaluation. If the component has been loaded afresh, its body is evaluated.

4. Type Checking. The component’s export signature is matched against the respec-
tive import signature.

Each of the steps can fail: the component might be inaccessible or malformed, evaluation
may terminate with an exception, or type checking may discover a mismatch. Under
each of these circumstances, the respective future is failed with the standard exception
Component.Failure that carries a description of the precise cause of the failure.

5.3 Component Managers and Sandboxing

Linking is performed with the help of a component manager, which is a module of the
runtime library, similar to a class loader in Java [GJS96]. It is responsible for locating
and loading components, and keeping a table of components already loaded by a process.

In an open setting it is important to be able to deal with untrusted components. For
example, they should not be given write access to the local file system. To deal with
this, we adopt the approach taken by Java: components can be executed in a sandboz.
Sandboxing relies on two factors: (1) all resources and capabilities a component needs
for execution are sited and have to be acquired via import through a local component
manager (in particular, they cannot be stored in a pickle); (2) it is possible to create
custom managers and explicitly link components through them. The implementation of
a custom manager can only use capabilities provided by its ‘parent’ manager, so it can
never grant more access than it has itself. Moreover, a component manager is inherited,
i.e. all imports directly or indirectly requested by a component will be linked using the
same manager. A custom manager hence represents a proper sandbox.
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5.4 Dynamic Creation of Components

The external representation of a component is a pickle. It is hence possible to create
a component not only statically by compilation, but also dynamically, by a running
Alice program. In fact, a pickle created with the Pickle.save function (Section 4.2) is a
component and can be imported as if it had been created through compilation.

The ability to create components dynamically is particularly important for distribution
(Section 8). Basically, it enables components to capture dynamically obtained informa-
tion, e.g. configuration data or connections to other processes, or dynamic type names
(Section 4.5).

6 Decomposing Components

What are components? The close relation to concepts presented in previous chapters,
like modules, packages and futures is obvious, so one might hope that there exists a
simple reduction from components to simpler concepts. And indeed, components are
merely syntactic sugar. Basically, a component defined by a sequence of declarations
dec is interpreted as a higher-order procedure:

fn link = pack struct dec end : sigexp

where link is a reserved identifier and sigexp is the component signature derived by the
compiler (the principal signature of the structure). In dec, every import declaration

import spec from s

is rewritten as®

structure strid = lazy unpack link s : sig spec end
open strid

where strid is a fresh identifier. The expansion makes laziness and dynamic type checking
of imports immediately obvious. Component acquisition is encapsulated in the compo-
nent manager represented by the link procedure. Every component receives that proce-
dure for acquiring its imports and evaluates to a package that contains its own export.
The link procedure has type string — package, taking a URL and returning a package rep-
resenting the export of the component identified by the URL. Imports then are simply
structure declarations that lazily unpack that package.

The link procedure represents the core of a component manager. Its job is locating com-
ponents and keeping a table of loaded components. When a component is requested for
the first time it is loaded, evaluated and entered into the table. Figure 4 contains a sim-
ple model implementation of such a procedure, that assumes existence of two auxiliary
procedures resolve, for normalising URLs relative to the URL of the parent component,

5An open declaration merely affects scoping, it does not touch its argument.
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val tfable =ref () : (url x package) list ref

fun link parent url =

let
val url’” = resolve (parent, url) (* get absolute URL *)
val p = promise
val table’ = exchange (table, future p) (*lock table *)
in
case List.find (fn (x,y) = x = url’) table’ of
SOME package = (* already loaded *)
(fulfill (p, table’); package) (*unlock, return *)
| NONE = (*notloaded yet *)
let
val component = acquire url’ (*load component *)
val package = lazy component(link url”) (*evaluate *)
in
fulfill (o, (url’ package) :: table’); * unlock *)
package
end
end

Figure 4: The essence of a component manager

and acquire for loading a component from a normalised URL. The procedure takes the
parent URL as an additional parameter in order to allow the respective resolution. To
achieve proper re-entrancy, the manager uses promises to implement locking on the com-
ponent table (Section 2.5), and unlocks it before evaluating the component (hence the
lazy application).

Giving this reduction of components, execution of an Alice program can be thought of
as evaluation of the simple application

link “." root

where link is the initial component manager and root is the URL of the program’s root
component, resolved relative to the “current” location, which we indicate by a dot here.

7 Distribution

Distributed programming can be based on only a few high-level primitives that suffice
to hide all the embarrassing details of low-level communication.

We first explain the basic mechanism for inter-process communication in Alice, and then
the mechanisms conveniently allowing to set up a connection’ for such communication.

"Where “connection” means a logical connection, and is definitely not a permanent connection at the
network level.
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7.1 Proxies

The central concept for distribution in Alice are prozies. A proxy is a mobile wrapper
for a stationary function: it can be pickled and transferred to other processes without
transferring the wrapped function itself. When a proxy function is applied, the call is
automatically forwarded to the original site as a remote invocation, where argument and
result are automatically transferred by means of pickling.

Proxies are created using the primitive
val proxy : (o = B) = (a = B)

For instance, the declaration

val f = proxy (fn X = x+1)

defines a simple proxy function. As a higher-level abstraction, a polymorphic functor
(Section 3) Remote.Proxy is available to transform all functions of a given structure into
proxies:

functor Proxy (signature S; structure X:S) : S

Communication between processes simply consists in calling proxy functions that have
been acquired from another process. All invocations of a proxy are synchronous: the
call

valn=f4

will result in a synchronous remote function call and does not return before the remote
process has computed and returned the result. In order to make an asynchronous call,
it suffices to wrap the application using spawn (Section 2.1):

val n = spawn f 4

This immediately returns a future that will be replaced by the result of the remote call
automatically once it terminates.

Note that all calls through proxies are statically typed, because proxies can be received
through pickles or other proxy calls only. In both cases, type consistency is ensured.

7.2 Client/Server

To initiate a proxy connection, one pickle must first be transferred between processes by
other means than proxy communication. The Alice library supports two main scenarios.
In the client/server model a client establishes a connection to a known server. A service
offered by a server takes the form of a local component, which we refer to as the mobile
component. Mobile components can be made available in a network through a simple
transfer mechanism adapted from Mozart [Moz04]. To employ it, a component is first
packaged (Section 4), and then made available for download using the following library
primitive:
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val offer : package — url

Offering a package uses pickling (Section 4.2) in way very similar to saving it to a file.
Given a package (Section 4), the offer function returns a globally unique URL, called a
ticket. This ticket is the public identification of the server in the network. A ticket can
be communicated to the outside world by conventional means such as web pages, email,
phone, or pigeons.

A client can use a ticket to retrieve the package from the server:

val take : url - package

This primitive expects a valid ticket and retrieves the corresponding package from the
server. The package can then be opened using unpack, which dynamically checks that
the package signature matches the client’s expectations. As a result, the downloaded
module is available to the client program. Noticeably, this is the only point where a
dynamic type check is necessary. Indeed, from now on, static type checking suffices to
ensure that all communication is well-typed.

In order to establish a permanent connection, the mobile component must contain prox-
ies. Once the connection is thus established, these proxies serve as the communication
channel(s).

So far, only the client can call the server side. To get a symmetrical connection, it
suffices to send client-side proxies back to the server as arguments to higher-order proxies
the server provided for this purpose. More complex communication patterns can be
established by passing proxies back and forth to other connected processes, for instance
to enable different clients to communicate directly with each other.

7.3 Master/Slave

In the client-server setting, clients choose independently to connect to a known server.
In contrast, in an alternative scenario, a master initiates shifting computational tasks
to a number of slave computers.

The library functor Remote.Run performs most of the respective procedure: it connects
to a remote machine by using a low-level service (such as ssh), and starts a slave process
that immediately connects to the master. It evaluates a component and sends back the
resulting module.

The signature of Run is the following:

functor Run (val host : string
signature RESULT
functor F : COMPONENT'MANAGER — RESULT) : RESULT
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Run is a polymorphic functor (Section 3) with two concrete arguments: the name of the
remote host, and a functor that basically defines a dynamic component (Section 5.4) to
be be evaluated on the remote machine. It takes a structure representing a component
manager (Section 5.3), which can be used to access local libraries and resources on the
remote host.

By using proxies defined outside of the functor F, and by creating proxies inside the func-
tor and exporting them in the result structure a two-way communication is immediately
established.

We illustrate the use of Remote.Run with a practical example in the next section.

8 Example: Distributed Solver

In this section, we illustrate the main features of Alice by showing the implementation
of a distributed application, namely a distributed solver for constraint programming.

8.1 Description

In the context of constraint programming, a solver is a program that explores a search
tree in order to find the solutions of a given constraint problem. Nodes of the tree
represent choice points, leaves represent failures (previous choices are inconsistent) or
solutions. From a logical point of view, searching amounts only to traversing a tree and
asking the status of each node.

In a distributed setting, each remote computer (worker) explores a different subtree.
The interesting information, that is the solutions, are transmitted back to a manager.
The manager also organises the search. In the following, we focus on the distribution
aspect. More information about the search itself can be found in [TLO04], which contains
a formalisation of the underlying abstractions, performing efficient backtracking and
vital optimisations such as branch and bound.

The interface between the workers and the manager can be represented as follows (see
Chapter 9 of [Sch02] for a more detailed presentation of this interface):

share

owtne— )

Manager

Worker Manager Worker

The find message is sent by a worker that is idle. It requests a job, that is, the path of
a subtree that remains to be explored. When a worker encounters a solution, it sends
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the collect message, along with the solution, to the manager. The share message is used
by the manager to ask a worker whether it can give away a subtree that remains to be
explored. The worker is required to answer either negatively, or positively by providing
the path associated to the corresponding unexplored subtree (hence the type unit — path
option below). The manager commands a worker to explore a subtree by sending the
explore message along with the corresponding path. The stop message is used to stop
the worker when the search is finished (for example, when the first solution was found
in a one-solution search).

8.2 Implementation

The implementation of the distributed search engine consists basically of two compo-
nents: the manager and the worker. The manager keeps a list of the workers it is
connected to. Each worker has the same interface:

signature WORKER =

sig
val share : unit — path option
val explore : path — unit
val stop : unit — unit

end

The manager creates workers by using the Remote.Run functor. Before that, the oper-
ations of the manager interface have to be defined. As explained above, the manager
interface provides two functions: find and collect. They are implemented by proxies:

val find = proxy (fn ) = bodqdy)
val collect = proxy (fn sol = body)

The definition of a worker also takes place in the manager. Basically, we create a
dynamic component (Section 5.4) in the form of a functor StartWorker. The worker
interface provides three function operations: share, explore, and stop. They are also
proxies. Additionally, the library used for constraint solving, named Gecode, is a native
library that cannot be pickled, it is sited (Section 4.2). Thus, each worker needs to
acquire this local library by using the component manager; this is the purpose of the
call to the Link functor provided by the manager.

functor StarfWorker (CM : COMPONENT'MANAGER) =
struct
structure Gecode = CM.Link (val url = “x-alice:/lib/Gecode”
signature S = GECODE)
val share = proxy (fn () = find some unexplored subtree)
val explore = proxy (fn path = explore the given subtree)
valstop = proxy (fn () = OS.Process.exit OS.Process.success)
end

In the implementation of explore, two special cases are interesting. If the exploration is
finished, the worker asks for some more work by calling find (). If a solution sol is found,
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it is transmitted to the manager by performing an asynchronous call spawn collect sol.
In both cases, a remote procedure call is performed, since the corresponding functions
find and collect are proxies.

In order to create multiple workers, the manager applies the functor Remote.Run repeat-
edly:

structure Worker = Remote.Run (val host = hosthame
signature RESULT = WORKER
functor Start = StartWorker)

Each newly created worker is stored in the worker list. Then, the search starts by sending
the root path of the search tree to the first worker of the list, then ask it for some work
to give to other workers.

8.3 Concurrency

Note that the manager must be able to handle concurrent requests from workers. For
example, the collect message stores the given solution in a list, which is protected using
a locking mechanism (Section 2.5). Noticeably, the list of collected solutions is returned
immediately when the search engine starts, in the form of a future. The list is built
concurrently while solutions are sent to the manager.

9 Implementation

An implementation of Alice must meet two key requirements: dealing efficiently with
the future-based concurrency model, and supporting open programming by providing a
truly platform-independent and generic pickling mechanism.

The appropriate technology to achieve platform independence is to use a virtual machine
(VM) together with just-in-time (JIT) compilation to native machine code. Futures and
light-weight threads are implemented at the core of the system, making concurrency and
data flow synchronisation efficient. More detailed implementation notes can be found in
a technical report [BK02].

9.1 Pickling

Pickling and unpickling are core VM services available for all data in the store. The pick-
ler takes a store object and transforms the subgraph of objects reachable from there into
a platform-independent external representation (a pickle) that is suitable for transporta-
tion over a network or storage in a file. The unpickler recreates a copy of the original
subgraph from a pickle. Pickling and unpickling preserve the structure of the original
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graph, including cycles and sharing. The low-level pickling service thus implements the
transitive closure semantics sketched in Section 4.2.

The system also features a minimisation mechanism that maximises sharing by merging
all equivalent subgraphs of a data graph, using variants of algorithms from automata
theory [Tac03]. This produces highly compact and efficient pickles.

In order to support platform-independent external, as well as an efficient internal data
representations, the system offers a generic transformation mechanism: in a pickle, cer-
tain data is marked to be transformed on unpickling. It will be converted to an internal,
possibly platform-dependent format. The internal data is also marked and preserves
enough information to recreate the external version during pickling. Floating point
numbers for instance, have different efficient internal representations on different plat-
forms, but their external, pickled representation must be uniform (using standard IEEE
format).

9.2 Codes and Interpreters

Code is managed as heap-allocated data, it is subject to garbage collection and can
be pickled and unpickled. While there is exactly one external representation (called
Alice Abstract Code), the VM allows for different internal types of code — e.g. JIT-
compiled native code and interpreted byte code — to coexist and cooperate. Different
codes and interpreters can be selected on a per-procedure basis. Pickler and unpickler
automatically convert between these internal codes and the external format. More details
can be found in a technical report [BK02].

The advantage of this generic model is that for different purposes, different internal codes
can be employed: usually, JIT-compiled native code delivers the best execution speed.
For code only executed once, direct interpretation of the abstract code is superior. A
debugging interpreter can make use of additional annotations and check more invariants
— the user can decide to run just a certain function in debug mode, with the rest of the
system being JIT compiled.

JIT compilation elegantly builds on only two existing mechanisms: the transformation
mechanism of the unpickler (Section 9.1), and lazy futures (Section 2.2). Unpickling
transforms abstract code into a lazy future, which triggers JIT compilation of the code
on request and results in the respective native machine code. Thus, native code is only
created when actually needed.

JIT compilation is the adequate way to deal with a future-based and open programming
language: at runtime, a lot of optimisations can be applied that are not possible for a
static compiler. The JIT compiler can be reflective, taking advantage of the ability to dy-
namically inspect referenced values. This is particularly important for the optimization
of futures and cross-component references represented as futures (Section 5).
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9.3 Safety

The Alice implementation does not yet give any safety guarantees — in particular, the
integrity and signature information of components is not verified currently. While type-
annotated code is rather standard, the ability to dynamically create components via
pickling also requires a certain amount of type information about data in the heap. It
hence was a conscious decision for the Alice project to focus on language design first and
consider implementation-level safety issues in a second phase.

9.4 Distribution

Thanks to the pickling-based approach, distribution requires almost no support from
the VM. In particular, the copying-based semantics implied by pickling avoid complex
inter-process references that require involved schemes for distributed garbage collection.
The only possible inter-process references are proxies. Distributed collection for dead
proxies is not yet implemented in the current version of Alice, but will be added in the
future.

10 Related Work

There is numerous work and languages concerned with some of the issues addressed by
Alice. We discuss those that are closest to our work, with focus on functional languages.

10.1 Java

Java [GJS96] was the first major language designed for open programming and has been
successfully used in practice. Unlike Alice, it is object-oriented with a rather inexpressive
and weak type system.

Open programming is based on reflection, which allows other components to exploit type
information constructively. We feel that general reflection is expensive, invites abuse,
and in practice demands a rather limited type system. Packages, as found in Alice, may
be considered as providing a specialised, more limited form of reflection that avoids these
issues.

Concurrency and serialisation are simplistic in Java and require considerable support
from the programmer. Code cannot be serialised, only class names can be used to
represent code, which is an inflexible and fragile abstraction.

Unlike in Alice, no structural type checks are performed when a class is loaded, sub-
sequent method calls may cause a NoSuchMethodError exception any time, undermining
the static type system to the point that Java has to be considered a dynamically typed
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language as soon as it is used for open programming. In contrast, the dynamic type
check performed by unpack in Alice ensures that all invariants of the static type system
are maintained — execution cannot fail later due to a type error.®

10.2 Scala

Scala [Ode05] is a hybrid object-oriented /functional language on top of the Java infras-
tructure. It has a very powerful static type and class system [OCRZ03] that subsumes
Java as well as much of ML, modules, and additionally provides multiple inheritance and
mixins.

Abstraction mechanisms are very expressive thanks to bounded views that specify a lower
bound as well as an upper bound for the type of the abstracted value. For comparison,
a signature in Alice is a lower bound of the abstracted component.

Still, concurrency and distribution in Scala suffer from the same shortcomings as Java,
due to its approach of reusing most of Java’s runtime and library. It hence inherits most
of Java’s problems regarding open programming. In particular, the expressiveness of the
static type system does not carry over to dynamic typing, because Scala types are erased
to Java types during compilation.

10.3 Oz/Mozart

Many of the concepts in Alice have been inherited from Oz [Smo095, VH04| and its
implementation, the Mozart programming system [Moz04]. Similar to Alice, it has high-
level support for concurrency, pickling, components and distribution.

Components are defined in terms of simpler concepts [DKSS98], albeit slightly differ-
ently than in Alice, due to the absence of a type system (see below). Components are
represented as pickles, but are not identified with them, as in Alice.

The distribution subsystem is even more expressive than in Alice, supporting distributed
state and futures. However, this is traded off with a considerable increase in complexity
of semantics and implementation (roughly ten-fold for the latter).

Unlike Alice, Oz is based on a relational core language with logic variables being the
primary means for data flow synchronisation. Futures have been added as an additional
concept in later versions, to allow for safer concurrency abstractions.

The most significant shortcoming of Oz is its lack of a static type system, and the
language’s structure probably precludes adding one.

8 More precisely, the use of laziness may delay type errors, but the package semantics prevents performing
a call into a component successfully, and still encounter type failure for subsequent calls afterwards,
due to inconsistent interface assumptions — all assumptions are checked before the very first use along
a given import edge.
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10.4 Acute

Acute [SLWT04] is an experimental, very expressive ML-based language for strongly
typed open programming. It is probably closest in spirit to Alice.

Similar to Alice, it features pickling (marshalling), abstraction safety, and a component
concept [Sew01, BHST03]. Pickling incorporates a mechanism for rebinding resources in
the target process in a controlled way, using explicit marks in the program. In contrast,
Alice requires resources to be reimported from the component manager on the target site.
This limitation is necessary for achieving sandboxing. No comparable safety mechanism
is built-in in Acute, all details of distribution are left to the programmer.

Components are roughly comparable in power to Alice, but have additional support
for versioning. Unlike Alice, Acute’s component concept is not definable in terms of
orthogonal, simpler concepts. We hence feel that it is more ad-hoc than Alice’s.

Like in Alice, abstraction safety in Acute can be achieved by dynamic type generativity,
but different levels of generativity are available [LPSWO03], providing greater flexibility.
In Alice, this has to be simulated by creating evaluated components via pickling (Sec-
tion 4.5). As a fundamental philosophical difference, Acute allows abstractions to be
broken by explicit means, for the sake of graceful dealing with versions.

10.5 JoCaml

JoCaml [FMS01] is an innovative distributed extension of Objective Caml [Ler03] based
on the Join calculus [FGL™96].

Concurrency and distribution are more high-level than in Alice: channels are used to
achieve both, concurrency and distribution, with expressive means of synchronisation
and thread migration. Synchronisation, based on Join Patterns, can be programmed in
a declarative manner, enabling elegant formulations of various concurrency abstractions.
The future concept of Alice is more primitive, although sufficient to express join patterns
as an abstraction with moderate size (ca. 200 lines for an experimental implementation).

On the downside, JoCaml is not open: dynamic typing and pickling is restricted to
monomorphic values that can only be stored on a global name server, and there is no
explicit component concept.

10.6 CML

CML [Rep99] is a mature concurrent extension of SML. It is based on first-class channels
and synchronisation events, where synchronization has to be fully explicit.
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The set of synchronisation events is primitive and cannot be extended easily by the
programmer. In contrast, futures allow for straightforward programming of user-defined
synchonisation abstractions.

CML does not address distribution or other aspects of open programming.

10.7 Erlang

Erlang [AVWW96, Arm03] is a language designed for embedded distributed applications,
that has been applied successfully in the context of large industrial telecommunication
projects.

It is purely functional with an additional, impure process layer. Processes communi-
cate over implicit, process-global message channels. Erlang is untyped, but has a rich
repertoire for dealing with failure.

Erlang is not designed for open programming, and does not directly support code mo-
bility nor safety policies. A distinctive feature of the run-time environment is the ability
to update code in active processes, however.

10.8 Clean

Clean is a concurrent, purely functional language with a type-safe import/export fa-
cility based on simple dynamics [Pv00, Pil96]. It does not have advanced support for
components or distribution.

11 Outlook

We presented the design of Alice, a functional language for open programming. Alice
provides a novel combination of coherent features to provide concurrency, modularity, a
flexible component model and high-level support for distribution. Alice is strongly typed,
and incorporates a module-based variant of dynamics to embrace openness, supporting
abstraction safety and typeful programming dynamically.

Alice is fully implemented with a rich programming environment [Ali04], and some small
to medium-size demo applications have already been implemented with it, including a
distributed constraint solver, a multi-player network game, and a simple framework for
generating web pages with active content scripted in Alice.

There is not yet a formal specification of the full language. Moreover, the implementation
does not yet provide extra-lingual safety and security on the level of pickles. To that
end, byte code and heap need to carry sufficient type information to allow creation of
verifiable pickles. Research on these issues has been left for future work.
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Other open questions we plan to address in the future are — among others — applicative
type generativity, a semantics for unloading or even updating components in a manager,
and higher-level library abstractions for concurrency and distribution.

Acknowledgements We thank our former colleague Leif Kornstaedt, who co-designed
the Alice System and invested invaluable amounts of work into making it fly.
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